3 research outputs found

    Memory CD8<sup>+</sup> T cells exhibit tissue imprinting and non-stable exposure-dependent reactivation characteristics following blood-stage Plasmodium berghei ANKA infections

    Get PDF
    Experimental cerebral malaria (ECM) is a severe complication of Plasmodium berghei ANKA (PbA) infection in mice, characterized by CD8(+) Tā€cell accumulation within the brain. Whilst the dynamics of CD8(+) Tā€cell activation and migration during extant primary PbA infection have been extensively researched, the fate of the parasiteā€specific CD8(+) T cells upon resolution of ECM is not understood. In this study, we show that memory OTā€I cells persist systemically within the spleen, lung and brain following recovery from ECM after primary PbAā€OVA infection. Whereas memory OTā€I cells within the spleen and lung exhibited canonical central memory (Tcm) and effector memory (Tem) phenotypes, respectively, memory OTā€I cells within the brain postā€PbAā€OVA infection displayed an enriched CD69(+)CD103(āˆ’) profile and expressed low levels of Tā€bet. OTā€I cells within the brain were excluded from shortā€term intravascular antibody labelling but were targeted effectively by longerā€term systemically administered antibodies. Thus, the memory OTā€I cells were extravascular within the brain postā€ECM but were potentially not resident memory cells. Importantly, whilst memory OTā€I cells exhibited strong reactivation during secondary PbAā€OVA infection, preventing activation of new primary effector T cells, they had dampened reactivation during a fourth PbAā€OVA infection. Overall, our results demonstrate that memory CD8(+) T cells are systemically distributed but exhibit a unique phenotype within the brain postā€ECM, and that their reactivation characteristics are shaped by infection history. Our results raise important questions regarding the role of distinct memory CD8(+) Tā€cell populations within the brain and other tissues during repeat Plasmodium infections

    Memory CD8 + T cells exhibit tissue imprinting and nonā€stable exposureā€dependent reactivation characteristics following bloodā€stage Plasmodium berghei ANKA infections

    Get PDF
    From Wiley via Jisc Publications RouterHistory: received 2020-11-02, rev-recd 2021-08-09, accepted 2021-08-13, pub-electronic 2021-08-27Article version: VoRPublication status: PublishedFunder: Medical Research Council; Id: http://dx.doi.org/10.13039/501100000265; Grant(s): G0900487, MR/R010099/1Abstract: Experimental cerebral malaria (ECM) is a severe complication of Plasmodium berghei ANKA (PbA) infection in mice, characterized by CD8+ Tā€cell accumulation within the brain. Whilst the dynamics of CD8+ Tā€cell activation and migration during extant primary PbA infection have been extensively researched, the fate of the parasiteā€specific CD8+ T cells upon resolution of ECM is not understood. In this study, we show that memory OTā€I cells persist systemically within the spleen, lung and brain following recovery from ECM after primary PbAā€OVA infection. Whereas memory OTā€I cells within the spleen and lung exhibited canonical central memory (Tcm) and effector memory (Tem) phenotypes, respectively, memory OTā€I cells within the brain postā€PbAā€OVA infection displayed an enriched CD69+CD103āˆ’ profile and expressed low levels of Tā€bet. OTā€I cells within the brain were excluded from shortā€term intravascular antibody labelling but were targeted effectively by longerā€term systemically administered antibodies. Thus, the memory OTā€I cells were extravascular within the brain postā€ECM but were potentially not resident memory cells. Importantly, whilst memory OTā€I cells exhibited strong reactivation during secondary PbAā€OVA infection, preventing activation of new primary effector T cells, they had dampened reactivation during a fourth PbAā€OVA infection. Overall, our results demonstrate that memory CD8+ T cells are systemically distributed but exhibit a unique phenotype within the brain postā€ECM, and that their reactivation characteristics are shaped by infection history. Our results raise important questions regarding the role of distinct memory CD8+ Tā€cell populations within the brain and other tissues during repeat Plasmodium infections
    corecore